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1.0 INTRODUCTION

High power microwave amplifier tubes, including injected beam crossed

field amplifiers (IBCFA's) and broad band traveling wave tubes (TWT's) may

exhibit several types of spurious signals in their output power spectrum.

This paper describes one class of spurious signals, called parametric oscil-

lations, for which a mathematical model is proposed.

By charting the-frequency fsp of the parametric signals as a function

of drive frequency fd, an empirical relationship is obtained:

fsp M mfo - nfd (1)

where n and m are positive or negative integers. fo is a fixed frequency

which is correlated empirically to a limit frequency in the stopband of the

slow-wave structure. Figures 1 and 2 show typical measured data obtained

from -an S-band IBCFA and a Ku-band TWT.

Relation (1) seems to indicate that the origin of these oscillations

is due to intermodulation products between two signals in the amplifier.

Assuming that the spurious signals are intermodulation products between the

signal frequency and an oscillation inherent in the tube at the frequency fo,

then one would expect to find a coherent oscillation in the absence of the

Injected signal (drive). Such is not the case. In fact, high drive power

levels are required for these oscillations to occur. Figure 3 illustrates

this behavior. Here, the amplifier is driven at a frequency of 3.9GHz, and the

lower edge of the circuit stopband is known to occur at 7.8GHz. The upper

right picture of the spectrum analyzer display (Figure 3) shows a normal clean

lip
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output power spectrum from the amplifier driven close to (or just into)

saturation (drive power level 32W). The output power is measured to be

S 1.6kW.

The photograph in the upper left hand corner of Figure 3 shows the

* spectrum containing the spurious signals when the amplifier is driven into

hard saturation (drive power level = 45W). The photograph in the lower

1left corner of Figure 3 shows the output spectrum appearing under these same
i conditions at the harmonic frequency of 7.8GHz. The output power dropped

from 1.6 to lkW at the signal frequency, resulting in a "power-suckout"

frequently observed in TWT's and CFA's.

Since the spurious signals are only observed under full beam power con-

Iditions and with the presence of a drive signal, preferably at high power,
it is believed that the amplifier is pumped by a signal related to the drive

signal, similar to a parametric amplifier. Hence, we have coined the term

"parametric oscillations" to describe these spurious signals.

A model which describes parametric oscillations must be based on the

existence of a) A full power electron beam, b) a strong RF drive signal, and

c) a periodic structure.

IA model, fulfilling these three requirements, was proposed to the Air

I Force Office of-Scientific Research for further evaluation, and sponsored

by the agency from July 1977 to June 1979. The first phase of the study

Iprogram applied the model to injected beam crossed field amplifiers. The

model predicted the simultaneous existance of very low frequency oscillations,

Ii which have been detected experimentally. These results, wh4ch have been

5I
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discussed in detail in an interim report submitted to AFOSR1 ), in pub-

;I licatlon2 ) and at the IEDM meeting in Washington, 19783), will be summarized

in this report.

The second phase of the program applied the model to helix type traveling

wave tubes. The results obtained will also be presented in this final report.

I

j

I
1

1) G. Dohler, Parametric Oscillations in High Power Microwave Amplifiers,
L Contract No. F49620-77-C-O0 (1979).

2) O. Doehler B. Dohler, IEEE Transactions on Electron Devices, ED 26(10),[ 1602 (19795.
3) 0. Doehler, G. Dohler, International Electron Devices Meeting,

I Washington, D.C. (Dec. 1978).



I I

2.0 THE BASIC MODEL

The delayed electromagnetic wave in a slow wave microwave amplifier

I propagates In a space with an effective dielectric constant c which is

determined by the geometric properties of the periodic slow wave structure

and the space "above" the line which contains the electron beam. In

operation, the electron beam is modulated in time and space due to the

1electron bunches passing above the line, so that interactions with the RF
wave can occur. The volume occupied by the electron bunches will therefore

present to the RF wave a time and space dependent dielectric constant. It

is therefore expected that the effective "hot" dielectric constant c of the

slow wave structure will also depend on the time and space dependent space

charge in the beam, and is given by:

T = (1+ 6Ap/po) (2)

Ap = Ap(r,t) = time- and space dependent space charge

po = dc space charge

6 = geometric factor

If one assumes now that the depth of modulation Ap/po is constant*, and that

the beam is propagating in z-direction, then Ap can be developed in a Fourier

series:

e - C C + E 6m exp jmd(t -z/ve)] (3)

wd - drive frequency (of delayed wave)

ve - average electron velocity in z-4irection

IIn operation, the depth of modulation increases with z until saturation
occurs. The assumption, therefore, holds over most of the line in overdrivei condition, and was used here only to simplify the discussion.

7
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The effective dielectric constant is, therefore, modulated with all the

harmonics of the drive frequency. 0If one simplifies further by considering

only the main Fourier component:

C [ + 6m cosw p(t z/ve)]  (4)

then it is seen that the effective dielectric constant is modulated with

a pump frequency fp = mfd . Even though the coefficient 6m in Relation (4)

may be small compared to 1, the existence of waves at frequencies wp in or

close to the stopbands, induces resonances in each periodic section of the

periodic wave structure, which are more pronounced with wide stopbands, and

thus may introduce further modulation of the beam at this frequency.

As required, this model is based on a) the presence of the electron beam,

perferably at full power, b) the presence of a drive signal, preferably in

overdrive condition and c) the existence of a periodic structure with a

stopband.

f
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3.0 THE CFA DELAY LINE

3.1 The Physical Model

Figure 4 shows schematically the interaction space of a crossed field

amplifier (CFA). The slow wave structure is a meander line, the individual

fingers of which are supported by ceramic bars. The individual fingers are

connected to adjacent ones at opposite ends by an "empty waveguide" section

(not supported by ceramic bars). The electron beam above the line is in-

jected from a cathode (not shown), and remains above the line by means of

a crossed dc electromagnetic field Eo (y-direction) and Bo (x-direction)

which forces the beam to move in z-direction with a velocity ve = Eo/Bo.

Each individual finger of the slow wave structure is therefore perpendicular

to the velocity of the electrons. As a result, each individual finger n

will be subjected to a purely time dependent dielectric constant, shifted

from the adjacent ones by a phase constant phase ±wpP/ve, where P is the

true pitch (in z-direction) of the line:

e(n) = I [1 + 6m cos wp(t - nP/ve)] (5)

If one now "stretches" the meander line, one obtains a waveguide (microstrip

line) which is periodically loaded by a dielectric of length Z,, as schematically

shown in Figure 5. By doing this, one effectively neglects the coupling

between the bars, but the frequency position of the band gap is preserved.

Thus, the model of the CFA, as shown in Figure 5, is a periodically loaded

waveguide the dielectric sections of which have a time dependent effective

dielectric constant as given by relation (5).

9
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3.2 The Mathematical Model

To analyze the line as schematically shown in Figure 5, one must first

solve the wave propagation in a single section, the dielectric of which is

periodically modulated with a pump frequency fp. Once the solution has

been found for a single section, boundary conditions at the interfaces of

the dielectric with the vacuum section must be introduced. As a result, a

transfer matrix connecting the fields at the entrance of a single dielectric

section n to the fields at the entrance of the next dielectric section n+l

can be found. By multiplying this matrix by itself N times, where N is equal

to the number of individual fingers (approx. 96), the entire transfer matrix

of the line can be found.

3.2.1 Mathematical Solution In a Dielectric Section

The equations governing the propagation of an RF wave in a waveguide are

given for a TEN mode by Maxwell's equations:

aE/ax = -P3H/at aW/ax = +acE/at (6)

which can be combined by introducing D = eE, since e is only time dependent

in a single dielectric section

a2D/a x2  - pa2D/3t2

This equation is solved by the method of variable separation [D = D1 (x)D2(t)]

by introducing a propagation constant $

D'(x)/D,(x) _ 2 " -=  i;(t)/D(t) (7)

112
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which leads to the solution

D(x) = a exp jax + b exp- jx

together with Hill's equation

D1(t) + (02/ep)D,(t) = 0

Using the dc term of the dielectric constant as well as the maximum of the

Fourier component (6 << 1)

1 1
= C [1 - 6 coS(Wpt - 0)]

one obtains Mathieu's equation by properly time shifting

O(t) + 0
2v2 (1 - 6 cos wpt)D2(t) = 0

From Floquet's theorem it follows that one solution is given by

Fv(t) = eJ tP(t) P(t) = £CnejnPt

where the characteristic exponent v has to be determined. In general, but

not necessarily, Fv(-t) is also a solution of Mathieu's equation which is

linearly independent of Fv(t). Thus In general

AejvtECnejnPpt + BeJvtECne-jnwpt (8)

is a complete solution for D,(t). Since 161 is small as compared to one, v

is generally real except for 20v a nwp, which will be excluded, since no wave

growing exponentially in time is observed.

I 
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From the solution obtained it follows that, for a single propagation

I constant O(z w/v) an infinite number of waves with frequencies wn = w + nwp

will propagate. The case w - nwp/2 must be treated separately.

l 3.2.2 Physical Interpretation and Simplification

3.2.2.1 Injection of a Single Wave

Let us assume now that a single wave of frequency f is injected into

the first section of the line. Due to the pump frequency, an infinite number

of waves with frequencies fn = f + nfp and with the same propagation constant

0 will propagate in the dielectric section, and exit this section on both

sides. Consequently, the second dielectric section will "receive" and reflect

an infinite number of waves with frequencies fn. These waves will transmit

through the second dielectric section with both the initial propagation con-

stant 0 and their eigen-value an - 21fn/v.

In principle, therefore, one must track an infinite number of waves in-

jected from both sides of each dielectric section. However, since the amplitude

of the waves of frequency fn generated in the first section, reflected and

transmitted by this section decreases rapidly with increasing value of n, it

is therefore practical to consider only values n = 0 and n = +1.

13.2.2.2 Injection of Two Waves: Active and Passive Coupling

Let us now consider the case of two waves with frequencies fl and f2

Iinjected into the first section. In this first section then, waves with fre-

quencies f,' a f, ± fp and f2-: a f2 ± fp will be generated. If the two

primary frequencies f, and f2 are such that (f, < fl):

fI: +, f (9)

I 1
I14 t
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then these two waves will be actively coupled . If, however

[f - fl - fp (10)

then, these waves are passively coupled. The differentiation between these

coupling modes ii made because two waves

*i(x)ej'lt and ,Jx)ejWO t

which are passively coupled will be coupled directly

eJ(wz + Q)p)t = ej(2t

J ej(U2 - 'Ap)t = ejut

Iwhile those actively coupled will be coupled indirectly through their con-

jugate comlex values

e(tdi - w0)t e-JW2t = (eJWlt)*

•J (wl - a)wt = e-Jwlt = (eJiwt)*

3.2.2.3 Presence of Three Waves and Boundary Conditions

The case analyzed assumes three primary waves f,, f?, f3 to propagate

in the CFA delay line, two of which are actively coupled and two of which are

Ipassively coupled

f f1 + fz fp f S f, " fp* (11)

The simplification n a 0, ±1 leads then to the presence of six waves within

*The teminology of active and passive coupling has been taken from Louisell's
work4J. Although the present theory, described in detail in 1), 2) and 3) is
more general since 0 is not necessarily equal to /e w/c, this terminology has
been kept here.

J i 4) N.M. Lovlsells Coupled Node and Parametric Electronics, Now York; Wiley (1960).



Ithe CFA lines, three waves propagating in each direction (forward and backward).
Each of these waves is actively or passively coupled to other waves, and is

[reflected or transmitted at each of the boundaries between the dielectric and
the vacuum of each section. The mathematical computation, therefore, requires

the tracking of six waves, each wave being characterized by two coefficients

(amplitude and phase). This requires 12 x 12 transmission matrices. The

-( computer program used requires as input conditions the geometry of the delay

line and the knowledge of three incoming waves (amplitudes A)(f,), A+(f2),

A+(f )). Furthermore, their relative phases f,, *, and *, must be given.

It is assumed that the line is perfectly matched at the input and output (no

reflections from the input and output connectors). Knowing the pumping phase

*p required between two adjacent bars

p , wpP/v e  (12)

the amplitudes A;(f,), A;(f2 ), and A;(f.) reflected from the line at the input

as well as the amplitudes B+(fi) transmitted through N sections can be cal-

Iculated (see Figure 6).
3.3 Computer Results

The computer results obtained are summarized herein by discussing the

I most pertinent results.

3.3.1 Results Obtained with CFA Line

I The pump frequency fp was continuously varied between 10 and 15GHz, since

the bandgap of the unfolded meander line was calculated to be between 12.8 and

I! 13.76Hz. The frequency f, was varied between the frequencies 200MHz and

16



I
t

INPUT OUTPUT

3E E I-- i,

A ' ---- -- ------ ---

I I

(81)
IloT OUTPUJT

I - . I

ei

; ----- I

Al 1 - I)

A I p. "0g 1 0

(b)
Fig. 6. Sdwmnatkc of boundary conditions. (a) General. (1), A given.

A-17

I - - -

(b
Ff& 6.Shmtco ,nu odiin.()Gn .()A gw



f - 200NHz. The input conditions

+At = 1

were used, and the pump phase *p continuously varied. The total output power

P1 - (A-)2 + (B+)2 for each wave of frequency fi was monitored. It becameI I
rapidly clear that Pi > 10 could only be obtained when both f, was close to

fp, and fp, the pump frequency in the bandgap, leading to a large power gain

at f2. Varying the pump phase p between bars lead to an increase of P2

above 100, and for #p= r, the result of Figure 7 was obtained. The following

two conclusions can be drawn:

1) Power gain is substantial at low values of f2(fl z fp).

2) As the pump frequency fp is increased, the value f2 for which

P2 becomes maximum also increases

f2MAX fp - fmax a fP" fo (13)

where fo is a fixed frequency which can be determined from

Figure 7 to be

fo 0 12.8GHz

which is just the lower edge of the bandgap.

The input conditions were changed by increasing the value of At from 1

to 500, leaving A, and A+ equal to 1. No appreciable power gain was obtained.
+ +

However, increasing At to 500, leaving A. a A+ a 1 led to a power gain for f 2

of more than 80dB, see Figure 8. Here again, the frequency fo a 12.8GHz is

clearly detected. Note also that about 20dB gain is obtained at fs (high

frequency).
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3.4 Experimental Verification

The computer results obtained predicted that a very-low-frequency com-

ponent in the spectrum should be present when parametric oscillations are

occurring. The measurement of frequency components as low as a few megahertz

being impossible at the output of the tube (waveguide output), a coupler was

inserted at the input of an S-band tube, and the reflected spectrum measured.

Figure 9 shows the low-frequency spectrum reflected from the tube in over-

drive condition. A very pure signal is observed at about 50MHz when the tube

is operated close to the w/2 mode. The signal disappears when the overdrive

condition is removed, and the frequency of the spectral line is independent

of sole or cathode voltage, thus refuting the hypotheses that backward wave

oscillations are responsible for this low-frequency content.

Finally, Figure 10 shows the output spectra under the same conditions

(the upper left picture shows the spectrum at the output of the tube, the

reflected spectrum being shown in lower left figure). It is seen that the

spacing between spectral lines is about 60M1Hz in both the fundamental and

harmonic spectrum, strongly indicating cross modulation between the drive

signal and the harmonic signal with the low-frequency component. These lines

disappear when normal drive power (30W) is applied.

3.5 Reduced Width of Bandgap (Stopband)

The mathematical model described above shows that the parametric gain

decreases when the width of the stopband decreases. It can be shown that

excess capacitance or inductance at the end of each bar of the meander line

W iresults shown in Figure 10 were obtained from another production tube
if compared to Figure 3.

I
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I (finger connections) increases the width of the stopband. Using the sim-

I plified model above, the value e for the phase shift per section can be

found from:I
cos e = cos at, + yZ° sin B,2 (14)

2

e: phase shift per section
II: length of dielectric section

I 2: length of connecting section

y: admittance of unloaded section 12

Zo: impedance of loaded section 1,

IThe stopband occurs whenever the magnitude of cos 0 is greater than 1. The

first stopband occurs where * approaches w, and cos e is less than -1. For

larger yZo , the stopband is wider, and the parametric gain will be greater.

Some experimental cold-test models were build to determine the effect

of possible excess capacitance at the edges of the meander line. The first

fmodels were meander lines on flat continuous substrates, with the corners
modified as shown in Figure 11. The effect upon the width of the stopband

of "clipping the corners" to reduce excess capacitance is shown in Figure 12.

IThe point was never reached at which removing more material would increase
the width of the stopband because of excess inductance.

IF 3.6 Conclusion and Discussion (CFA)

The model for parametric oscillations presented here fulfills the basic

U requirements empirically defined for their existence, namely, the model requires

the presence of an electron beam, preferably at full power, and the presence

of a drive signal, preferably in overdrive conditions. The model then clearly

24
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I
~defines a fixed frequency fo located at the lower edge of the bandgap of

the periodic slow wave structure, and predicts the simultaneous existence of

a very-low-frequency oscillation. The existence of this low frequency os-

cillation has been verified experimentally.

IThe presented model further predicts that power gain is obtained at
low frequencies (f,) and frequencies close to the bandgap (fl). This power

is obtained from the pump signal, and thus apparently from the second harmonic

of the drive signal. If it can be shown that power from the fundamental drive

signal can be converted to power in the second harmonic, from which power is

removed, then the power "suckout" observed frequently would also be explained.

Therefore, the necessary further mathematical and experimental evaluation of

the present model can only be completed if the direct influence of the electron

beam is taken into account.

As described in the interim report, difficulties in computer programming

occurred during the first phase of this study. It is only after the introduction

of 3 coupled waves that gain could be obtained.

I
I

I

I
I
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4.0 THE MODEL OF THE O-TYPE TRAVELING WAVE TUBE

4.1 The Physical Model

Figure 13 shows a typical rod supported helix which serves as slow wave

m structure in many 0-type traveling wave tubes. The helix, or spiral, is

supported inside a metallic cylinder by a certain number of rods, and an

electron beam of cylindrical syfhetry moves with a velocity ve in z-direction

inside the helix. The electromagnetic wave, injected at one end of the helix,

mainly propagates between the helix and the cylinder (at ground), and there-

I fore propagates in a "quasi" microstrip line with the velocity nearly equal

to the velocity of light, c. To advance in z-direction by a distance P equal

to the pitch of the helix, the RF wave must travel a distance X = v'(2R) 2+P2

Ialong the helix. Consequently, the wave advances in z-direction with a re-

duced velocity v - cP/1, and synchronism in z-direction between the beam and

~1the wave can be achieved by properly dimensioning the helix.

Considering Figure 13, it is seen that the wave propagates around the

helix with a velocity c for a certain distance given by the separation between

[the rods supporting the helix. As a result, therefore, the RF wave propagates

again in a microstrip which is periodically loaded by a dielectric. In

i Figure 13, the RF wave penetrates and exitt a dielectric section three times

for each period-of the helix.

I Similar to the case of the CFA, the electron beam is RF modulated at a

i frequency fd and contains all the harmonic frequencies mfd . Following the

discussion in Section 2.0 of this report, the wave at point z will propagate

I
I

I
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1 Ground Cylinder

I E-beam

Helix

Figure 13. Schematic of TWT interaction space.
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in a medium with an effective dielectric constant c given by*:

D - E [1 + 26cos wp(t - z/ve)] (15)

Since the wave is slowed down by the helix structure, Relation (15) can be

simulated by assuming a time and space dependent dielectric constant:

= [I +-26cos wp(t - z'/e)] (16)

ve ve /P

where z' is the travel distance along the helix.

Consequently, if one stretches the helix (as was done previously for

the meander line), the RF wave propagates in a microstrip which:

a) is periodically loaded by a (small) dielectric section

b) and whose (effective) dielectric constant varies as given by

Equation (16).

This is schematically shown in Figure 14. Comparing Figure 14 with Figure 5,

it is seen that the effective dielectric constant of the helix is not only

time dependent, as it is in the CFA, but is also dependent on the space co-

ordinate x (which replaces z). Although similar in principle, both models

are different in this respect, and require a different mathematical model.

4.2 The Mathematical Model

4.2.1 Maxwell's Equations

Assuming the wave to propagate in the wavegutde shown in Figure 14 to

propagate in a TEN mode, the relevant Maxwell's equations become:

3E/3x - -1i aH/at; W/x a +a cE/at

The factor 2 in front of 8 was introduced to simplify the following equations.
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I Microstrip (helix)

I Dielectric from support rods

=~~~~~ V[ o~wtxie) 'l + 6' cos w p(txIVe))

j Figure 14. Physical model of the helix structure in 0-Type traveling
wave tubes (z' was replaced by the coordinate x for simplification).
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where e is the time (t) and space (x) dependent effective dielectric constant

for any section of the simulated helix waveguide structure.

For a given frequency w, the solution for constant e is obviously given

by the "free" modes:

exp j (wt ± Bx) a = W (17)

representing waves with the propagation constant 8 and the phase velocity

±c- ± (Cj4.

If the dielectric constant depends on time and space:

e - E [1 + 26cos(wpt - 0px)] (18)

Op " wp/Ve = wpP/SVe = (nwdP)/(tve)

then a single mode (w,O) will also contain components w + nwp. Using therefore

the Ansatz:

E = Z En exp J(w + nwp)t + c.c. (19)

H = E Hn exp J(w+ np)t + c.c.

where c.c. stands for the complex conjugate values, it follows immediately

by insertion:

dEn/dx + Jwn uHn a 0 wn = + n( p (20a)

dHn/dx + wn Un - Jwn 6i [en.l e'JPX + En+l ejBpx t  (20b)
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I where the conjugate values have disappeared since each of the equations can

i be modified by taking its conjugate complex value. As discussed previously

for the CFA delay line, if a wave with a single frequency w is injected into

the simulated helix waveguide structure, then waves of all frequencies

wn - w + nwp will be generated and will propagate within the first section

I of the periodic waveguide. Contrary, however, to the CFA meander line, these

waves will not propagate with a common propagation constant . Consequently,

an accurate mathematical model must keep track of an infinite number of waves

in both directions. It is seen, however, from Equation (20b), that the waves

generated by the wave w decrease rapidly in amplitude as n is increased. It

is easily shown that the amplitude of the n-th mode related to W varies

proportionally to the n-th power of 6, where 6 is small as compared to 1. It

is therefore meaningful to consider only the waves with n = 0 and n = ±1.

4.2.2 Active Coupling

Let us consider now the case when two waves of frequencies F, and F2 are

injected into the simulated helix waveguide structure. Let us further assume

that F1 and F2 are chosen in such a way that:

F1  + F2  = Fp (21)

The injection of the wave of frequency w, will lead to the generation of waves

with frequency w1 - wp and w, + wp. The value of w, - wp being equal to -W 2 ,

and neglecting the term with frequency w, + Wp, it follows that the wave of

I frequency w, is coupled to the wave of frequency w2 through the complex value

I

iI
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of the wave at frequency w2. Similarly, the wave of frequency w 2 Will generate

waves of frequencies w2 + wp and W 2 - wp = -wi. Thus, the waves of frequency

W1 and w2 are coupled through their complex conjugate values. Using

Equations (20), one obtains the 4 equations:

dE,/dx + jpwH 1  = 0 (22a)

dH,/dx + j:w1H, = -j6&Z(E 2* e'JBPX) (22b)

dE2/dx + jiiw2H. = 0 (22c)

dH2/dx + jW2EE2 = -j6W2 (El* ej1px) (22d)

The waves (E,, HI) and (E2, H2) of frequencies wi and w2 are coupled

through their complex conjugate values. It can be shown4 ) that the waves are

actively coupled in this case, meaning that power from (to) the pump can be

transferred to (from) the two waves.

4.2.3 Passive Coupling

Let us again assume two waves of frequency F, and F8 to be injected into

the simulated waveguide structure. Let us assume now that the two frequencies

F, and F. fulfill the condition:

) F3 - F, = Fp (23)

1The injection of the wave of frequency w, will lead to the generation of waves
with frequency w. - wp = w, and w, + w . Similarly, the wave of frequency w,

will generate waves of frequency w, + * w, and w- wp. If one neglects
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the components related to the frequencies w, + wp and w, - wp, the following

relations are obtained from Equations (20):

dE1/dx + jvw1H1  = 0 (24a)

dH1/dx + jC-WE 1  = -J6SI(E 3 eJ$PX)  (24b)

dE,/dx + JpwsH 3  0 (24c)

I dH3/dx + jw3SE3  = -j6ZwS(Ele-JPX) (24d)

J It is seen in this case that the waves (E,, H1) and (E., H.) of frequencies w,

and W 3 are coupled to each other through their corresponding amplitudes. It

can be shown4 ) that power may be transferred from one wave to the other, but

no power is delivered by the pump. Following Loulsell 4 ), these waves are

referred to as being passively coupled.

(4.2.4 Relationship to Normal Modes

Relations (24a) and (24b) can be combined by multiplying the second relation

l by the impedance Zo - 5/-1 of the waveguide. If one adds and subtracts the

resulting relation from Equation (24a), one obtains the relation:

A1± @ = -j 6 V- o ( 3+ +  ejOPx  (25)

where we have introduced the normal modes:

En ± ZHn
=n 4 (26)

I
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I and the differential operator

i An± = d + Jn (27)Tx

Equation (26) is the classical representation of normal modes. The power

carried by the mode is 1en+I 2 - n-12, indicating that fn+ is a forward

mode, and n- is a backward mode. This can be easily seen from relation (25)

when neglecting coupling. One obtains then:

$1± ~ e±JBIX

which corresponds to waves with positive and negative phase velocity.

4.2.5 Parametric Amplification

Let us assume two waves of frequencies w1 and W 2 to propagate in the

waveguide, and let us assume that they are actively coupled:
1

W I+ W 2  = (Zp

and that their uncoupled propagation constants are B, and 02, such that:

Sp = + 02 +

The corresponding normalized coupled mode equations are then given by:

A,+ fl+1 + -J!- R w, *,* e'JBPX (28)2 + i2 + 2 l" W2Y
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I where the conjugate complex of the second equation was taken (4+ - A.

In normal mode nomenclature, the coupling coefficient c1 2 from wave 1 toI
wave 2 and the coupling c21 from wave 2 to wave 1 are given by:

C12  0 -j 11 VIP W1

I C21  = ' .I
showing immediately that the Manley Rowe equations are fulfilled:

I Ci 21

( W 1  W)2

Introducing:

and using the Ansatz:

*j+ = Aj+ eiBi'X " 1, 2

fone obtains by inserting into the system (28):

x d C 1
(Ux- JI) A2+ "  C2 A,+I (f.x+ 4 ) A2.+.* -cz,

1.
[



Solutions of this system of equations is easily obtained by assuming A,.

and A2+ to be proportional to exp Xx. The Elgen-value X must satisfy the

relation:

X 1 628,0, - (29)

showing that exponential growing waves are obtained for very small values of 8.

The energy gained by the waves, therefore, must be obtained from the pump.

For 0 = , the maximum gain is obtained, namely Am = 1 6V .

It is interesting to note that exponential gain with a backward wave

can be obtained. For B = -202 namely, relation (29) can give exponential

gain:

X = ± 82 ,6281182-

However, the maximum gain becomes very small.

4.2.6 Frequency Conversion

Let us now consider the case of two waves of frequency F, and F3 which are

passively coupled:

F9- F, - Fp (30)

Let us further assume that these waves have uncoupled propagation constant 01

and 03 such that:

r3 -, ..O
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The corresponding normalized coupled mode equations are easily obtained from

equation (24), namely:

A=+0 + J 'vi1 *s+ e BpX

! 3+ -j L E w, 1+ eJBPX

IAs previously shown, the Manley Rowe equations are fulfilled. This system of

equations can be solved by using the approach described in Section 4.2.5.

We will employ Laplace's transform to demonstrate a more general technique to

solve such a system of equations.

If ij+(p) is the image of j+(x), it follows:

(P + Ji8) 1+(P) = WIc i3+(P - Jip)

(p + J6,) ;+(p) = w3,c *+(p + jp)

From the second of these relations, the value i,+(p - JOp) can be found

by replacing p by p - jBp. It follows then that i. can be eliminated, leading

to an equation containing ,+ alone. This relation can only be fulfilled if:

1 P2 + jp(B] + 03 - OP) - 1(03 - ) c2W1W, - 0

I leading to:

P = -J[01 +,- Bp ± f(Ol - B, + p)2 - 4c'w, ] / 2

I Since c2 is negative*, it follows that p is always imaginary, so that no in..

stabilities (exponential growth) can occur. In this case, power is transferred

back and forth from the two distinct modes * and *,+.

c is purely imginary

I2
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4.2.7 Boundary Conditions* I Considering the periodically loaded waveguide shown in Figure 14, it is

seen that the waves alternately will propagate in an empty section of the wave-

i guide followed by a "small" section filled with a dielectric. At each of

the interfaces between the empty waveguide and the filled waveguide, boundary

conditions must be fulfilled. These boundary conditions require the matching

I of the field components (E, H) for any given frequency. From the definition (26)

of the normal modes, it follows that the two functions:

I = 2 /o (j+ + ,j) (31)

Hj - 2(sj+ -

must be continuous at each of the boundaries considered. Note that J indexes

the frequency considered.

4.2.8 Conclusion

fWe have established the mathematical fundamentals of the model proposed for

the traveling wave tube in terms of the coupled mode theory. As in the case

of the CFA, we will consider waves with three different frequencies, which

means that we will have to track 6 waves, 3 in each direction. The boundary

I" conditions (31) must then apply at each of the many interfaces between the

empty and filled waveguide sections.

LI 1Imm m * m m l mm m3m m a mi . .
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4.3 Three Waves

4.3.1 Basic Relations

We shall consider three waves of frequency F,, F2 and F, to propagate

in each direction. We shall assume that the waves 1 and 2 are actively

coupled, and that the waves 1 and 3 are passively coupled, i.e.:

F1 + F2 = Fp (32)

F3 - F, = Fp

In view of the results obtained in Section 4.2 of this report, it is seen

that the "free" propagation constants B = wi i fulfill equations similar

to Equation (32), namely:

01 + B2  = p - ip (33)

Ba - $ z

Iwhere we have introduced Op which is not necessarily equal to sp, the prop-
agation constant of the "dielectric wave", which propagates with a velocity

q determined mainly by the velocity of the electrons.

Considering the results obtained in Section 4.2, it is seen that a system

of 6 differential equations of the first degree must be solved:

I'l± 01± *JcBI(02+* + 02-*) exp -Jpx (34a)

I ;JCB1 (#,+ + 03_) exp lBpX

I

mIl
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I

I m 2+. = + jcB2 (f,+ + fs_) exp jipX (34b)

As*t *s± jC8 (fl+ + 0,_) exp -jpx

I
Ai± = (d/dx) ± jai; c - 6/2

The first step in analyzing the proposed model will be to solve this system

of equations.

4.3.2 The Dispersion Equation

The system of equations (34) can be Laplace transformed:

#(p) - r e-PX 0(x) dx

0

Six equations are then obtained, which contain the image functions Oi±, some

of which with arguments p ± jp. These image functions can easily be elim-

inated by shifting p to p ± Jlp. Eliminating the functions 02± and i,_
leads to two equations for is±:

I~ ~ (+ BI -K p-K + (p) )=
K P - I + K - (p) 0

which can only be fulfilled if the determinant of the 2 x 2 matrix vanishes.

I This leads to particular values of p -jB, which must fulfill the dispersion| equation:

B2 012  61' L Oil - + J 35)
I
I
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If 6 = 0, the "free" solutions B - 0, are obtained. If 6 0I 0, then relation (35)

represents a 6th order equation leading to 6 different solutions. This could

be predicted since we started with a system of 6 differential equations (34).

In general, 62 is very small as compared to 1. Unless at least one term

of the denominators of the right hand in (35) nearly vanishes, the solutions

of equation (35) are given approximately by B - ±6,. "Strong" deviations from

these solutions can only occur if and only if one or both of the following

relations is satisfied:

±2 ± B2 Op

Remembering that Bi are positive values, and considering relation (33), it

follows that interaction occurs when either or both the following relations

are satisfied:

01 + B2 = p

as- $I ;p a ,p

The right hand side of equation (35) will be small as compared to 1 (pro-

portional to 62) if 8 is set approximately equal to -B1. Consequently, one

can deduce that the backward wave 1 will never be "strongly" coupled to the

other waves, and, as such, can be assumed to propagate "free" with the un-

perturbed propagation constant -0,. Similarly, one can deduce that the

nun l
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backward waves 2 and 3 will also propagate "freely" with their respective

propagation constants -0. and -0. respectively. Thus, one can assume the

backward waves to propagate as:

i- ~exp +j01 x

If one neglects now the respective coupling terms related to backward waves

in the system of equations (34), one finds a dispersion equation of the third

order only, namely:

6 2 0 ___ 0 - 02 (36)

4e = '&0, Ae+ p A04 - ABp

= B- 0; ABp = p - ;p

This relation merits some discussion. Consider the following cases:

(a) Neglect wave 3 (03 a 0)

The solution corresponds then to the solution obtained earlier for

actively coupled waves 1 and 2:

AO= (Ap/2) - i /62BB 2 - ABp2 / 2

Under synchronism (4Op - 0), maximum gain for the exponential waves are obtained.

(b) Neglect wave 2 (02 - 0)

The solution corresponds to the solution obtained earlier for pas-

sively coupled waves 1 and 3:

AO -(,0p/2) J i +p2 +a B, / 2

In this case, no growing waves are obtained.
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(c) Synchronism ( Op )

In this case, it is easily seen that the solutions become:

Bz and 0, ± s; s - (6/2)1B(0, - 02) (37)

Since it can be shown that B - 02 = 20,, no growing waves can be expected.

In view of the growing waves one obtains between actively coupled waves,

this result seems surprising. However, the passively coupled mode dominates

the actively coupled mode, and power is essentially converted among the various

waves.

(d) General case (assynchronism)

In the general case of assnychronism (ABp 0 0), it can be shown that

growing waves will exist if the synchronism factor ABp is slightly positive

or negative. Under certain conditions, discussed in Appendix 1, the imaginary

part of 0 becomes:

Im(0) - .24 6iq (1.6)

(0q/02 >> 1)

In general, however, one must solve the dispersion equation (36) to obtain

the exact values of the solutions 01.

II
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j 4.3.3 The General-Solution

Representing the solutions of the dispersion equation (36) to be1
9= S1,  SS2 3

then the most general solution for the three waves is obtained by using the

ansatz:

i+ : An esnx ei81'x  (38a)

Inserting this value into relations (34b) and (34c) and keeping in mind that

coupling from and to backward waves is neglected, leads to:

I2+ = C02 1An e )JSnX exp J(02 + Aop)X (38b)

1: p - Sn-

3 An n e 'JsnX p
3+ C -) exp -i(B, + ABp)x (38c)I ASP + s n 1

where the coefficients An are determined by boundary conditions. For example,

the knowledge of *j+(O) for all three waves (1 = 1, 2, 3) at x = 0 uniquely

determines An.

14.3.4 Conclusion

I The most general solution has been determined when 3 waves of frequencies

F1 , F2 and F, are propagating in each direction in a given section of a wave-

[ guide. Two of these waves were assumed to be actively coupled, and two of

these waves were assumed to be passively coupled. The simultaneous presence

I
[
I
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of all three waves does not lead to exponential growing waves when perfect

synchronism is assumed. A certain value of the asynchronism factor -p, how-

ever, leads to exponential growing waves. The sensitivity of the synchronism

factor ABp on the exponential growth of the waves may explain the extreme

sensitivity of the "power suck-outh to external and internal tube parameters,

such as beam voltage and assymmetry in the placement of the helix supporting

rods.

A generalized thenry with these three waves requires solving a dispersion

equation of the slx-th order. Simplification results when no coupling from

and to the backward waves is assumed. The third order dispersion equation leads

to three solutions, two of which can be complex conjugate. The general solution

(38) must then be applied to each section of the waveguide, and proper boundary

condition introduced. This requires again a complex computer code, and the

results will not be explicative from the physics point of view. Since two

actively coupled waves lead to exponential growing waves, we will apply in

the next section the boundary conditions to waves F, and F. which are actively

Icoupled (Section 5.0).

-I
I
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5.0 PARAMETRIC TWT AMPLIFICATION

1 5.1 General

In order to understand the physics involved in both the cases of CFA and

the TWT, we will consider in this section two actively coupled waves such that:

W1 + W2 = Wp (39)

01 + 82 = Op

It follows then from the discussion in Section 4.0 that the general solution

of the system containing 4 waves (2 in each direction) is given by:

1+ = (a1 eSX + a2 e-SX) exp -jo1x (40a)

= b, exp jex (40b)

JA (a8 esx - a esx) exp 4j 2x (40c)
02+ = c (a1 4B2

+*

02- = b2 exp -JB2x (40d)

where a1 and bi are constants of integration.

'?t us define the vector:

4*+9 (41)(I' = Ol-' $24.' $2-) 11

It is then easy to define the transformation matrices for a single section

of the waveguide.

I
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5.2 The Transformation Matrices

5.2.1 Transformation Through a Single Empty Waveguide Section of Length LL

I Figure 14 shows the schematic of the wavegulde to be analyzed. Let us

assume that the "entrance" of a single empty waveguide section is located at

I x = 0, so that the "exit" of the empty waveguide section is located at x = 11,

see Figure 15.I+
If the value of the vector q at x = 0 is known (see definition 41), then

I the value of ip(t1) in the empty waveguide can be easily determined by using the

relations (40). One obtains a transformation matrix (LI) which transforms the

vector ip such that:

S(t 1) = (L1 )*(O) (42)

where L, is defined in Figure 16. This matrix can be decomposed into a matrix

(L10) representing the transmission in the absence of pumping (s = 0) and a

Icoupling matrix (S,) which describes the coupling through the pump frequency wp.
5.2.2 Interface Boundary Condition

The boundary conditions (31) must now be applied at the interface between

the vacuum and the dielectric (see Figure 15). The vectors at the position

x = L1- A and at the position x = Z1 - A (A -) c) can be related to each other

jby a transformation matric (Bo):

;(Z, - A) - (Bo) (t+A) (43)

where (Bo) is defined in Figure 17. We are now in the position to relate directly

I ij(L) in the dielectric to the initial vector *(0) in the vacuum by the trans-

formation:
1(4 - (Bo"1) (L) (0)

Note that B0 is a transformation matrix which does not depend on the pump wave wp.

I49
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1

t e'joS coshst1  0 -Ke'J snhsts 0

10 ejort1 0 0

-eJ821tl(stnhstj)/K 0 e A cohst, 0

L 0 0 0 eJ$2 I

K =JS/CS 2

e 0 0 0o- e- J~1 0 0

0Le1 0  =O o e ejB2Ll 0

0 0 0 e 0

1J
c cohst, 0 -Ksinhst1  0

Ii0 1 0 0

Si -sinhsts/K 0 coshsts 0

0 0 0 1

I Figure 16. The transformation matrix (LI) which can be represented by the
product (L,) - (L1o)(s 1 ).
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I. (B°)

I+ rc I RE

(BI) - 2U A

I

Figure 17. The 4 x 4 boundary transformation matrix (Bo ) decomposed
into 2 x 2 matrices.
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5.2.3 TransformatiOn Through the Dielectric Section

The behavior of the solution in the dielectric portion is similar to the

behavior of the solutions in the vacuum section if one replaces i by kj,

where ki = Bi//e-d, Cd being the dielectric constant of the dielectric material.

To be exact, the solution of the dispersion equations will be ±i,, where i1

is either real or imaginary, depending on the synchronization factor. There-

fore, the transformation matrix through the dielectric section (L2) will be

similar to the transformation matrix (L1). We will assume that t2 is so

small, that the coupling matrix (S2) is nearly equal to unity:

+ (2) 40 (2) ( (44)

(L2) = (L20) ($2) (120)

where the transformation matrix (L2.) is shown in Figure 18 (and should be

compared to Figure 16).

5.2.4 The Transformation Through a Complete Single Section

If one applies a boundary condition transformation similar to the one

given by relation (43), one finds that the transformation one has to apply

is just given by Bo. Consequently, it follows that *(I, + 12) * *(p) at the

entrance of a vacuum section can be related to the vector (0) of the fol-

lowing section through a transformation matrix given by:

;(p) " (Bo) (Li) (SI) (13o"1) (Lie) (SI) (0) (45)

li53
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0 e•j kkl 2  0 0

(L20) ejk 2 2  0
0 0 e

, 0 ei jk21 2

coshs1 L2  0 -Kslnhs,1 2  0

o 1 0 0
(s2) -=
( -sinhiI1 2/i 0 coshi1t2  0

0 0 0

1.

Figure 18. The 4 x 4 transmission matrix (L) - (2.) (s 2 ) (L2.)
through the dielectric.
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g which, as discussed earlier, can be simplified by setting (S) - (I):

I $(p) = (To) (S1) *(0) (46)

(To) = (BO) (L20) (Boj1 ) (L10)

where (TO ) is the unperturbed transformation matrix one obtains when coupling

(pumping) between the waves is neglected.

5.2.5 The Complete Transformation Matrix

It is clear that if N individual sections are present, then one can
relate the input vector *(0) to the helix to the output vector (Np) of

the helix by successive transformations (46) to obtain:

;(Np) - (ToS)N *(0) (47)

We note here that (To ) is the inperturbed transformation matrix, and that

(TO) is multiplied by a coupling matrix (Si) which is nearly equal to the

unit matrix st, << 1. It is therefore of interest to discuss the matrix To

before solving relation (47).

5.3 The Unperturbed Matrices

In the absence of the coupling, i.e., (Sj)-I, both waves of frequencies W1

and w 2 will propagate uncoupled through the periodic waveguide structure. Con-

sequently, the 4 x 4 matrix (TO) can be reduced to 2 x 2 matrices Z(i) such that:

T6 0 Z(2) (48)

bI
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I where Z(i) represents the transformation of a single wave of frequency wi.

The matrix Z can be calculated rather easily, and one finds the matrix shown

_ in Figure 19. This matrix fulfills the condition Det Z - jZI - 1, and, fol-

lowing Cowley Hamilton's relation, can be represented by:

Z - I cos e + K sin e (49)

where e is defined by:

Cos e (Zl + Z22) a Real Z11

2

=Cos olcos k9.2 - + £sin oil~ sin kZ2  (50)
2 A

and K given by: (Z11 -Z22  -1

(z z
2 12

K sin 8 = (51)

Z2 - Z Z2

2

It can be shown rather easily that:

K2  - - I; Zn - I cos ne + K sin no (52)

where I is the unit matrix.

• Relation (51.) describes the w-B diagram. If the right hand dide of

Equation (50) is larger than or equal to 1, then e becomes imaginary, and no

I. propagation can occur In a waveguide made up of many individual periodic sections.

ViA



If 0 is real, then- relation (51) describes Floquet's theorem: the waves

I suffer a net phase shift e per single section.

I Of interest for later use are the eigenvalues X and the eigenvectorst

of the matrix Z. It is easily seen that the relation:

An in nn

can be verified for:

A2  e e (53)

I &1,2 =(-K 12. K11 + j),

showing that each wave &1 .2 is phase shifted through the N sections of the

helix:

-I ±Jtne
&1 (Out) - e &,,2 (in)

Note that the eigenvalues fulfill the second order equation:

i2 A 2 XACos e+l I= 0 (54)

It follows therefore that the unperturbed matrix To in equation (48) has

the 4 eigenvalues X-,. i2 a I* 9 X39 it z 3 where AX1.2 are the eigenvalues

Iassociated with the matrix Z(), i.e., the frequency wl, anX-,arth
( eigenvalues associated with the matrix Z(2), i.e., the frequency w2. The

elgenvectors of the matrix To are then given by:

Fl&*1,2 - C- K120l), K11(lMj 0, 0J (55)

X 192  a 0±01 tjo X34 ej

aWW 571



5.4 General Metho4.of Solution

The general method which will be applied to solve relation (47) will be

as follows:

1) determine the 4 elgenvalues Aj of the matrix T = ToS1

2) determine the 4 elgenvectors Ut of the matrix T = ToS,

3) decompose the input vecotr O() into 4 elgenvectors a n

4) apply the multiplication rule:

TN *(0) an  On

5) compare the resulting vector to the vector ;(Np)

When applying the multiplication rule, let us assume that Ar = Xn( + ,

then:

NN c)
T 0(0) = I an  n ( + E n

I

so that gain can be expected whenever I1 + enI > 1, since:

(0 + C)N * exp [N in (I + E03 a exp Nen

One can therefore expect a power gain G whenever the real part of en is positive.

The gain G will then be given by:

Gn = 8.7 N Real e (56)

IM
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5.5 Results and Discussion

It can be shown that the 4 elgenvalues A of the transformation matrix must

fulfil a 4th order equation which is discussed in Appendix II. This 4th order

equation with complex coefficients has been numerically solved by computer.

With N = 100, small gain of a few hundreds to a few tenths of a dB were generally

obtained* except in the vicinity of 01. 2 kit. In this case, a double or quadruple

solution was expected, and inaccuracies in the computer code were evident. How-

ever, gains in excess of 100 dB were calculated..

A general discussion on the eigenvalues is made in Appendix I1. Of

primary importance are the two parameters 61 and 02, which describe the actual

phase shift of the waves F, and F2 through a single waveguide section. Dif-

ferent cases are considered.

Case I - General Case: kt e e, # e2 # nit

The gain obtained In this general case is relatively small, being pro-

portional to the square of the amplitude of the dielectric modulation (i.e. ~ 62).

Since 6 is small compared to 1, no appreciable gain is obtained. This was

verified by computer code.

Case II - The it modes (e, or e2 = kt, but e, ' e)

It is shown in Appendix II that if one of the waves is a it mode, then a

gain proportional to 6 is obtained. This leads to a gain of a few dB's, as

verified by the computer.

Case III - Dual and Equal i modes (kw - 0, a 0, + 2nw)

Maximum gain is obtained when both waves are i (or n) modes. The gain here

is found to be proportional to the square root of 6 and, with the values 8 - 10- 2 ,

e 5, ta/Li - 10%, gains in excess of 100 dB's were calculated.

* Computer evaluation was made by using 6 - 10-2, e - 5, 5 2/A m 10%
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As shown in Appendix II, the relevant values of En [An Xn(l + En)]

are approximately given by:

En2  = ± £- I sinh(641.$2 ,It/t5)AZ /' "(57)

A2  = (sinB;t1 sin02R 1)

Relation (57) has been confirmed within 20% error by computer calculations.

It is surprising to find the gain to be proportional to a 1

Case IV - Dual and Opposite w modes: (kw = el = e2 + (2n + 1)w)

The gain one obtains in this case is porportional to 6, and corresponds

to the single w mode case. This case is important, however, since it can directly

be related to the results obtained for the CFA.

In the case of the CFA, maximm gain was obtained when F, was first at

the lower edge of the first band gap (e = w). A very low frequency oscillation

(F2 = 50 MHz) was then determined. This corresponds to 02 f 0.

It can therefore be expected that even higher gains can be obtained in

the case of the CFA is both 01 and e2 are set equal to kr modes (e - kr,

e2 = 0 2n r). This case was not analyzed as yet: the approximations made for

the CFA evaluation do not allow to set F1 Fi.



6.0 CONCLUSIONS AND FUTURE WORK

The general model, proposed by Northrop and supported by AFOSR, for the

occurence of parametric oscillations in high power microwave amplifiers has

been applied to both injected beam crossed field amplifiers and traveling

wave tubes. The results obtained clearly indicate that the model can describe

the effects of one class of spurious oscillations observed experimentally.

In the case of the CFA, a constant frequency located within the first

band gap has been identified. The occurence of the spurious oscillation has

been linked to a very low frequency oscillation. This low frequency os-

cillations has been observed experimentally, and was shown not to be correlated

to backward wave oscillation. Experimentally the band gap of meander lines

has been reduced by properly matching the finger end connections. The results

have been published in 2 publications2'".

The model of the TWT was simplified in order to obtain a better under-

standing of these oscillations. The occurrence of simultaneous w modes

leads to gains of the order of 100 dB's or more. The analysis carried out in

this report implicitely assumes perfect synchronism (01 + B2 = Bp). In

general, this is not the case. Appendix III shows the dispersion equation for

the assynchronism. A detailed analysts should be made using the proper dis-

persion equation,

A basis for the occurence of parametric oscillations has been -established.

If it can be shown that power from the fundamental drive signal can be converted

to power in the second or higher order harmonic from which power is removed to

build up the paralmetric waves, then the "power suck-out" observed frequently

would be explained. This subject should be investigated, together with a

correlation between experimental data and the theoretical predictions made In

this report.
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APPENDIX 1

The Dispersion Equation

The dispersion equation (38) can be written in normalized form:

x3 + 3px + 2q = 0 (1.1)

p = -_1y2 + 1]; q = yz
3

x = AO(vE/60 1 ); y = &ABp/601; z = 8q/21,

The relevant parameter to discuss is:

K = p1+q 2  = q1 (y+1)1+y2z2 (1.2)

If K is positive, then one real and 2 conjugate complex solutions exist.

Let us therefore discuss the possibility of conjugate complex solutions.

In order to obtain growing waves, one must fulfill the condition:

y 1 2  (1.3)

In order to discuss this condition, let us discuss the value for K. For y -0,

K is equal to -1/27, and is negative. The maxima (and minima) of K as a function

of y are determined by the condition:

K

ay



I which leads to the following conditions:

i (a) y=O <0

(b) y2 + =3z

I Condition (a) is without direct interest, since K < 0. Condition (b) requires

y2 to be positive, and therefore:

I y2 = 3z - 1 > 0

Inserting this value for y into (1.2) leads to the condition:

KM  = z2 (2z - 1)

which is always fulfilled since 2z - ;q/0, and the waves are actively coupled.

I It follows therefore that exponential growing waves will always exist if the

"synchronism" factor y is set equal to

y = _ *-z-1

and it is clear that a certain "bandwidth" Alp exists around this value

in which growing waves exist. If K is positive, then one usually defines

the two parameters u and v given by:

uS a -q + ; v9  = -q-9 (1.4)

and the 3 solutions are then given by:

x - u v; x,,, - -- ± (u-v) (1.5)
82 2
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Maximum gain Is therefore obtained when K is maximally positive, i.e., for

K = Km. An estimate for the maximum gain can be obtained when K =

- z[/3,z-I + '2z- 1]

v z[3z z- I - 2z 1]

which shows that z must be chosen as large as possible. Since z = q/0i,

it is seen that $I must be chosen as small as possible. For large values

of z, one obtains:

u3  % z/z (r + 4) z (1.47z) 3

v 3 =  ztz (63_ -6) z (.68z)s

and the maximum gain will become:

(u - V) z (1.47 -. 68) = .68z

" .34 q/

In terms of AO, it follows then that:

Jm max = A(.34 gql0z..,-. 2480 (1.6)

.26L
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Il APPENDIX 11

I Eigenvalues of (ToS1 )

It can be shown rather easily that the 4 elgenvalues Ai of the transformation

I matrix (ToS1 ) have to fulfil the following 4th order equation:

[A2 - A(Z ,(1)coshx + Z22(1)) + coshx] • (A2.1)

[,&2 - A(Z,*(2)coshx + Z2*(2)) + coshx] +

j - sinhx 2 E1 - &Z11 (1)] [1 - AZ1 *(2)] = 0

with x = st1

If one assumes now that cosh s 1 << 1, one finds easily:

(A - X )(A - )X2)(A - A.3XA - X) - sinhx2 [l - AZ11(1)][1 - AZ11(2) ] - 0 (A2.2)

where the Xi are the etgenvaleus of the unperturbed transmission Matrix To,

namely:

X -" exp JeI; X 2 - exp -jei (A2.3)

X9 = exp J02 ; 4 = exp -Je2

Physically, X1 and X2 are given by the phase shift el a wave of frequency

w, will suffer through one single but complete section of the periodic waveguide.

Similarly, e2 is the phase shift a wave of frequency W2 suffers through one

single but complete section of the periodic waveguide.

7:
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We expect the elgenvalues A.j of the dispersion equation (A2.) to be close to

the elgenvalues ) of t he unperturbed matrix. Therefore, we will use the

ansatz:

Aj = ),j(l + ej) (A2.4)

The terms I - AJZI1 In relation (A2.2) can then be simplified:

1 - AjZ 1 -

and one finds:

1 - X1Z11(1) = - _ (x1 - x2 ) (1 - JK11lI))

1 - X2Z11(1) = 2 I- 2) (1 + JK11(l)) ( 2 5

I -XSZ 11(2) - -2 (X3 - X4.) (1 + JK11(2))

I - x,zZ 1(2) = -- (X - X4) (I - JK11(2))

2

These relations show the importance of the value of K11 , i.e., Z11 . The

real part of Zi was given in relation (50), namely:

Real Z11 - Real Z2. = cos e (A2.6)

cos e = cosBt1 coskZ2 - a sin6t, sinkI2

a (1 + e)/2/e"

e - dielectric constant

ITI
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Similarly, the imaginary part of Z11 can be evaluated:

IImZ 11  IMZ2242 --JK11 sine (A2.7)

= -(cos~l, slnkZ2 + a sin0l, coskL2)

Furthermore, since the determinant of the matrix (Z) is equal to 1:

ZlIZ22 -z 12 Z2 1 U I

One finds easily with Z11 -= * cose + K11sine

-K + 1) sin 2e = z12Z21 =E (c i 2  01
4c

resulting in the relation:

K a ±j f+Cc-12snBi(A2.8)
J 4c sin'e

e - dielectric constant

Clearly, relations (A2.8) and (A2.7) show that KI1 may become infinite as 8

approaches kir, and that the product

(L I*( + JK11) - j sine (I + JK12)
2

approaches the value - sine KI, as 0 kw. For 8 kw, the value stays generally

finite if BA1,~ kv.



-

J/

I
We will now differentiate between cases.

Case I: Xi e Xj (i # J)

In this case, the elgenvalues of the unperturbed matrix are all different

from each other. Using (A2.4) and (A2.5) one finds:

E, sh1 - ,2Zi*(2)
*z - sfnh~x [l - jK1 ,(1)J 2(P. -' A)-s)( -"A,)

£2 - sinhlx [1 + JK11(1)J 1 - AK(21 A)2(X,2  -X)(X2 - X)

(A2.9)
11 - ,SZ11()

C3 - snhx L1 + JK1(2)] 2(, - X1 M)(A - X2)

1 - A,,Z, 1 (1)
co, - sinhlx [1 - JK11(2)] I A 1 )

2(A,4 -XO)N, - A),

It is seen that cj is proportional to the square of the depth of modulation 6

(sinhx - x - 6.'B1j 2 ZI./2), and as such, relatively low gain will be obtained.

It is interesting to note that K,, can become infinite for sin 0 - 0. In this

case, however, X, and X. are nearly equal, so that the case of the w modes

must be considered.

Case II: The singular w mode

Let us assume that 01 is nearly equal to kw, and that 0 2 kw. To solve

the dispersion equation, let us set:

X- * X1 ( + 32) X cos 8 * 1

Ill << 1. XA X8

[I



Let us solve again the dispersion equation (A2.2) with the ansatz:

'& - )L(l +e)

The first term in equation (A2.2) becomes equal to:

x2  : -- )()L -

The second term of the same equation can be evaluated by using the following

relations: (§ * 0)

I - X1(l + el) Z11(l) =(I + el) [I - NIZII(l1)] e-

0- l) ~(XI IN) (I-Ki())] -l

- AK11(l)sine, - el -JX11mZ,1 1 )

Consequently, with X, ±1, one obtains:

sh2X______
5~ 2) -Jsi ImZ11(l) I-1 Z11(2) (A2.10)2 1 ;COS02

* jsinhx (mz11(l) [I + J________

For § -o 0, it follows that e is proportional to sinhx. It is interesting to note,

however, that the right hand of equation (A2.7) can become infinitely large if

the denominator 1 4 coOO vanishes. This occurs for cose, - 2irk if 01 2wk',
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or for cose2 = (2k + 1)v if 01 = (2k' + l)w. Therefore, it is expected that

a maximum value of e will be obtained when 0 0 2+ 21m and 01 = nw. We

Iwill consider in the following the dual w modes.
Case III: The dual w modes

The dual w modes will be characterized by:

I. e, = e2 + 2kw - nw

To solve the equation (A2.2), we will use the ansatz:

SA = N(I + el)

X - XI(l + 1i) it 2

Similar to the discussion above, one finds for the left term in equation (A2.2):

As" C£(Ci - 12)(61 - 1,)(el - 4)

and the right term of the same equation can be evaluated by using the two

relations.

1I - XZ11(1) : -jA 1 (ImZ11l())

1 - X(Z,*(2)) - jXImZ1 (2)I
It follows therefore that the equation (A2.2) becomes:

c(1 - S)( - ,s)(c, - 14) a sinh'x ImZ,1 (1) lm(Z,1 (2)) (A2.11)

which results for perfect synchronim (0 - 2 - kw):

C 2 sinhx "Elm Z111) ImZ1,(2)] (A2.12



From the condition that the determinant of the matrix (Z) is equal to 1, namely:

(Real(Z 11))2 + (Im(Z1l))2 - Z12Z21  - 1

and that Real (Z,,) = ±1 at 0 = kv, it follows that:

Im(Z) ' _ 2 = _ E sinBtl

and:

+ ± -1 sinhx (_+slnBl.lt sinB2 Z]J2
C 1 2 + _ i--- (A2.13)

Relation (A2.13) shows that el is proportional to the square root of sinhx x,

showing that large gains can be obtained.

I
I
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APPENDIX III

Non-Synchroneous Case

Equation (39) in Section 5.0 required the synchronism of the two waves,

I i.e., the wavevector Op of the pump wave was set equal to the sum of the two

wavevectors 0, and 02. Physically, this means that the waves are in complete

.I synchronism within the empty waveguide sections. However, under these con-

ditions, the pump wave will advance during the passage of the waves F, and

F2 through the dielectric section. Therefore, the second relation of (39)

is not necessarily fulfilled. Instead, one must write:

S= 01 
+ 02 + AS (A3.)

Following the approval shown in Section 5.0, one finds then that the value

of s must be replaced by:

So 1 ,6z8z12 _ A02  (A3.2)
2 60

as derived in Section 4.0. Furthermore, it is easily shown that the coupling

matrix (si) in relation (46) must be replaced by a matrix (si') given by:

a, 0 0 0

0 1 0 0
Si' * (A3.3)I a 0 oi 0

0 0 0 1

[



with

a, -[cohs'L + sintstj exp -j tj
= csht +~2s' 12

a2= J sinhs'l, exp - J OI (A4. 4)
2s' 2

C13  = -j §ka sinhs'l, exp j Alz
2s' 2

Consequently, the 4th order equation for the Elgenvalues (see Equation A2.1)

will become:

[A2 
-A(Z(1 IM CE + Z22 0 )) + CO1  (A3.5)

[ 2
-A(1 11(2) al + Z2 2 ()) + 0s1 3 +

- t (1 AZ 1 (l)J [I - &Z*(2)] 0

Note that:
OL20 62182,02 S.t

~2a= ysinh~st (A3.6)

(11 2 - M 21

Let us assume now that al oi 1. One obtains then the equation:

(A - XM)A AM2)A -As)(A -.X4 = sinh s'tl

[I AZ11(1)J[A - AZ1 (2)J
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